OpenSim support in the Neurorobotics platform

A key area of research of the Neurorobotics Platform (NRP) is the in-silico study of sensormotor skills and locomotion of biological systems. To simulate the physical environment and system embodiments, the NRP uses the Gazebo robotics simulator.

To perform biologically significant experiments, Gazebo has however been lacking an important feature until now: The ability to model and simulate musco-skeletal kinematics.

Therefore researchers had to rely on ad-hoc implementations calculating effective joint torques for the system at hand, wich is time consuming, error prone and cumbersome.

The physics plugin we implemented provides OpenSim as an additional physics engine alongside the physics engines already supported by Gazebo (ODE, Bullet, SimBody and DART). OpenSim is using SimBody as its underlying framework, thus featuring a stable and accurate mechanical simulation. The OpenSim plugin supports many of SimBody’s kinematic constraint types and implements collision detection support for sphere, plane and triangle mesh shapes along with corresponding contact forces (as exposed by OpenSim’s API).

However, first and foremost it treats physiological models of muscles as first class citizens alongside rigid bodies and kinematic joints. OpenSim is shipped with a number of predefined muscle-tendon actuators. Currently, users of our plugin can use OpenSim’s native XML configuration file format to specify the structure and properties of muscle-tendon systems, which are created on top of Gazebo models specified in Gazebo’s own file format (SDF).

A ROS-based messaging interface provides accessors for excitations and other biophysical parameters allowing to control musco-skeletal systems from external applications such as the Neurorobotics platform.

As demonstration of the capabilities of our physics plugin, we augmented a simple four-legged walker with a set of eight muscles (one synergist-antagonist pair per leg).

The problem we address in this demo is the reinforcement learning task of deriving a controller that excites the muscles in a pattern such that the walker is driven forward. Our setup consists of a Python application (remote-controlling Gazebo via the ROS-based messaging interface for the OpenSim plugin) performing the high-level optimization procedure and running a neural network (NN) controller.

We employ a simple genetic optimization procedure based on Python’s DEAP package to find parameters of the NN that maximize the score the walker obtains in individual trial runs.

The walker is rewarded for moving forward and penalized for unwanted motion behaviour (e. g. ground contacts of the walker’s body, moving off-center).

During a trial run, the physics simulation is stepped in small time increments, and during each iteration the NN is fed with various state variables. The NN’s output is comprised of excitation levels for the muscles. For simplicity we stuck to well-known artificial neural networks, implemented via the Tensorflow package.

We also experimented with fully dynamic grasping simulation using SimBody’s collision detection system and contact force implementations. Although the simulation setup for the grasping tests only comprised a simple two-jaw gripper and a cubic shape (consisting of a triangle mesh shape), the SimBody engine as used in our plugin was able to maintain a stable grasp using fully dynamic contact forces, tackling a problem that is notoriously difficult to solve with other physics engines.

Another application using the OpenSim plugin for Gazebo features a simplified muscle model of a mouse’s foreleg actuated by a neuronal controller modelled according the spinal cord of a real mouse. The details of this experimental setup will be covered in a separate blog post.

The OpenSim plugin does not support all of the features implemented with other engines in Gazebo. For instance, some joint types are not implemented yet. Also, some features unique to OpenSim (like inverse dynamics simulation) are not yet available in the current implementation.

To simplify the design of kinematic models with muscle systems and custom acutator models, it is planned to provide researchers and users of the NRP with a consistent, simple way to specify muscles via a graphical interface using the NRP‘s Robot Designer application.


One thought on “OpenSim support in the Neurorobotics platform

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s